
Journal of Chromatography A, 887 (2000) 187–198
www.elsevier.com/ locate /chroma

Theory for migration of ions in capillary electrochromatography
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Abstract

The fundamental migration theories for chromatography and electrophoresis are both based on a solution of the mass
balance equation. The corresponding analysis for an electrochromatographic system has previously been published and is
analysed in more detail in this paper. It is shown that the resulting equation, Eq. (8) in this paper, is in agreement with both
electrophoretic and chromatographic theories and that when these migration modes are mixed a complicated migration
behaviour emerge. These complications arise, if the comparison is done with electrophoretic theory, because the presence of
the stationary phase creates a number of new restrictions on the system (electroneutrality on the stationary phase and
simultaneous equilibrium for all components between the eluent and stationary phase). From a mathematical point of view,
these restrictions make it difficult for the system to satisfy the coherence condition and this in turn may lead to an anomalous
behaviour. To minimise the possibility for a complicated behaviour it is advisable to avoid too much mixing of the two
migration mechanisms and/or to match the mobilities of the ionic components in the eluent phase with the mobility of the
analyte ion.  2000 Elsevier Science B.V. All rights reserved.
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1. Introduction resis, the physicochemical properties of an electro-
chromatographic system are not well known. Of

The first electrochromatographic experiments were particular importance is the generation and control of
made by Pretorius et al. in 1974 [1] and some years electroosmotic flow (EOF) in packed columns and
later Jorgenson and Lukacs [2,3] described the this is therefore an area which recently have been
separation of neutral compounds in packed capil- more closely investigated [7–12]. In capillary elec-
laries to which an electric potential difference across trochromatography (CEC) the EOF is caused by a
the length of the column was applied. In a series of combination of electrical and viscous forces in a
papers Knox and Grant [4–6] analysed and discussed packed bed. The physics of this process is very
the advantages of the electrochromatographic tech- complex and the existing theoretical models for these
nique compared to chromatography and electropho- systems were recently reviewed by Rathore and

´resis. Since then, and particularly during the last 5 Horvath [13].
years, the research in electrochromatography has With some exceptions, most of the literature on
increased dramatically and it has been demonstrated CEC treats the separation and migration of un-
to be a very powerful separation technique. In charged eluites. Such eluites migrate through a CEC
contrast to liquid chromatography and electropho- column due to the flow of the eluent phase only and

generally have the same velocity and retention factor
1 as in a corresponding chromatographic system. ForAffiliated to the Department of Analytical Chemistry, Uppsala

University, Uppsala, Sweden. uncharged eluites there is therefore no difference in
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the basic retention principles between these two can be calculated in terms of the ionic composition
techniques. The only difference is that the flow of the background electrolyte. It is found that the
profile in the column can be different so that the conductivity is a function of the eluite concentration
band spreading mechanism is different. The migra- in the column and that this leads to inhomogeneous
tion of an ionic eluite, on the other hand, is in- field strength within an eluting zone. At high eluite
fluenced by both the electrical field in the column concentrations these inhomogeneities in field
and the adsorption to the stationary phase. This leads strength leads to sharpening and broadening effects
to the complex non-linear coupling between the at the boundaries between the eluite containing zone
electrophoretic and the chromatographic migration and the background electrolyte. This effect is the
which it is the purpose of this paper to investigate. main cause for the non-Gaussian peak shape en-
The effect resembles the effect of the Kohlrausch countered in electrophoresis and has been discussed
regulating function in electrophoresis, i.e. the fact in detail by Poppe [23] and Mikkers et al. [24,25].
that the electrolyte composition in the zone con- In analogy with chromatography and electropho-
taining the eluite is different from the composition in resis, the migration theory for a ionic eluite in CEC
the background electrolyte. However, in CEC of is based on a mass balance analysis [26]. Since
ionic eluites this effect becomes much more compli- electrochromatography is a hybrid between chroma-
cated than in electrophoresis. The reason is that the tography and electrophoresis the resulting theory for
condition of electroneutrality in both the stationary CEC is more general and contains chromatographic
phase and the eluent, in combination with the and electrophoretic migration theory as limiting
equilibrium condition for the species between the cases. The combination of chromatographic and
two phases, must also be fulfilled. electrophoretic migration theories means that the

The migration rate of an eluite through a chro- assumptions made in chromatographic theory (e.g.
matographic column as a function of its adsorption equilibrium distribution of the eluite between the
isotherm to the stationary phase and the velocity of stationary and eluent phase, electroneutrality in both
the eluent phase is obtained from a mass balance these phases etc.), is combined with the assumptions
analysis. The analysis forms the basis of the ideal in electrophoretic theory (constant current through
model for chromatography and was first performed the column cross-section etc.). The combination of
by Wilson [14] and later in a more rigorous form by these assumptions and restrictions implies that it is
DeVault [15]. From the analysis the migration rate of more difficult for the CEC system to fulfil the mass
the eluite as a function of its adsorption isotherm is balance equation than it is for the ‘simple’ systems.
obtained and it is shown that when the eluite has a Therefore the result of a mass balance analysis in
non-linear adsorption isotherm the eluting peak will CEC becomes much more complicated and shows
be asymmetric. The ideal model for chromatography many more features than the corresponding ‘simple’
has more recently been theoretically and experimen- theories. It has, for example, previously been shown
tally studied in a series of papers by Golshan–Shirazi [26] that for a non-linear adsorption isotherm of the
and Guiochon for the case of a Langmuir isotherm analyte a focusing effect may occur which offers an
[16–19]. A detailed discussion of the mass balance explanation for the extremely sharp peaks that has
analysis in chromatography is found in the classical been reported for ionic analytes in CEC [27,28]. In
book by Helfferich and Klein [20]. its general form, the migration theory for an eluite in

The migration rate of an eluite zone in electro- CEC contains an arbitrary number of eluent phase
phoresis is also obtained from a mass balance components, where each of the components may
analysis. From the analysis Svensson [21] formulated adsorb to the stationary phase. To simplify the
a method to calculate the number of boundaries and analysis, a model system consisting of just three
the ionic composition in the zones which are created ionic components is discussed here. It is reasonable
in moving boundary electrophoresis. The Kohlrausch to assume that the theoretical results for this model
regulating function [22] is another fundamental result system also reflect the behavior of a more complex
in electrophoretic theory which is obtained from a system.
mass balance analysis. From this equation the ionic A mass balance analysis is performed in either
composition of the solution containing the eluite ion differential or finite form. The former form is



˚J. Stahlberg / J. Chromatogr. A 887 (2000) 187 –198 189

required to calculate the peak shape at different been performed and the resulting equation has been
locations in the column. For CEC this mathematical solved [26]. The solution gives the velocity of the
approach results in a set of coupled differential moving boundary as a function of the concentration
equations which are probably not possible to solve of component 3 on the S side of the boundary. From
analytically. The finite form, on the other hand, can the velocity the composition of the solution on the S
be solved analytically for a three-component system side of the boundary as a function of the con-
and gives qualitative information about both the centration of component 3 is calculated.
migration rate and the peak shape. In this paper the In the mass balance analysis the system must be
previously [26] derived algebraic equation for a carefully specified and some assumptions introduced.
three-component system with finite concentration In the ensuing discussion the stationary phase is
differences is treated. The purpose is to further assumed to be a cation exchanger, components 1 and
investigate and analyse the properties and implica- 3 are positively charged and component 2 is nega-
tions of this equation. tively charged, all ionic species are assumed to be

monovalent. The boundary moves along the column
due to a flow of eluent phase [with the velocity v0

22. Theory (m/s)] and current [current density I (A/m )]
through the column. In the system the direction of

The three-component model system discussed in the electrophoretic movement of component 3 and
this paper consists of a sharp boundary located the direction of the eluent phase flow are therefore
between two different eluent phase compositions and the same. The current density and the volumetric
is schematically shown in Fig. 1. In a general three- flow of the eluent phase are both assumed to be
component system all three ionic species may occur constant and the same through all column cross-
on both sides of the boundary. In this theoretical sections.
analysis only two components (denoted 1 and 2) are We also assume that components 1 and 2 do not
present on both sides and the third component is adsorb specifically to the stationary phase. However,
present on the left hand side of the boundary only. In since component 1 is counterion to the fixed charges
analytical applications of CEC this system corre- on the stationary phase, electroneutrality in this
sponds to the case where components 1 and 2 are phase requires that component 1 is nonspecifically
eluent ions and component 3 is the analyte ion. A adsorbed to this surface. Component 3, on the other
mass balance analysis for this system has previously hand, may adsorb specifically to the stationary phase

and in order to maintain electroneutrality, desorption
of component 1 occurs to the same extent as
component 3 is adsorbed. The assumptions used in
the ideal model of chromatography is also used, i.e.
there is an instantaneous equilibrium between the
composition in the eluent phase and the stationary
phase, respectively. It is also assumed that the
current is transported only by the ions in the eluent
phase, i.e. there is no surface conduction. Another
assumption is that the elecrophoretic mobility of the
ionic components is constant and independent of the
ionic strength in the eluent phase.

Fig. 1. Schematic description of the three-component electro- Under these assumptions the solution of the mass
chromatographic system which is discussed in this paper. The balance equation results in the following equation for
system consists of a moving boundary that separates two different the velocity v (in m/s) of the boundary (see Appen-
compositions of the eluent phase. Ions 1 and 2 are present on both

dix A for a brief summary of the derivation of Eq.sides of the boundary but component 3 is present on one side only,
(1) and Ref. [26] for the derivation of a more generalc and n represents the eluent and stationary phase concentrationi i

of component i, respectively. equation):
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]]]]]]]]]]]]]]
2k v 2c 1 fn 1 v b 1 Ic u 6 v b 2 k v fn 1 Ic u 2 4v bIc u c 1 fns d s d s dœK 0 3 3 0 3 3 0 K 0 3 3 3 0 3 3 3 3

]]]]]]]]]]]]]]]]]]]]]]]]v 5 (1)2 c 1 fn k 1 bs ds d3 3 K

3In Eq. (1) c (mol /m ) is the concentration of3 u v b12 ] ]] ]c ? ? u 2 u 1 K u u 2 ?s dcomponent 3 in the eluent phase and n (mol /m ) is 3 3 2 u 1 23 u v 2 v F3 0
]]]]]]]]]]]the corresponding equilibrium concentration on the c 5 (5)1 u 2 u2 1stationary phase. In the equation F is the Faraday

constant (C/mol), f the column phase ratio (1 /m) and that:
2and u (m /V s) the electrophoretic mobility ofi 1 1 v b

] ] ]] ]u u ? K 2 c 2 2 ?component i. k is the conductivity of the eluent F S DG1 2 u 3K u u v 2 v F3 1 0phase on the S side of the boundary when there is no ]]]]]]]]]]]]c 52 u 2 u2 1adsorption of component 3 to the stationary phase,
(6)i.e. in a corresponding pure electrophoretic system:

u 2 u u 2 us ds d3 1 3 2 By inserting the velocity calculated from Eq. (1)]]]]]k 5 F c 2 K u u (2)F GK 3 u 1 2u3 into these two equations, the ionic composition on
the S side of the boundary can be calculated as awhere K is the Kohlrausch regulating function:u
function of c .39 9c c1 2 In this paper we will assume that the adsorption] ]K 5 2 (3)u u u1 2 isotherm of component 3 is linear. For this case we

3 can set:9 9Here c and c (mol /m ) are the concentrations of1 2

components 1 and 2 on the S9 side of the boundary. fn 5 kc (7)3 3
At this side of the boundary these are the only ionic

where k is the chromatographic retention factor ofcomponents and electroneutrality in the eluent phase
component 3. The assumption of linearity is proba-9 9 9requires that c 5 c . In analytical applications c is1 2 1
bly the most serious assumption made in the ensuingexperimentally known since it is the ionic com-
examples. The reason is that in an ion-exchangeposition of the eluent phase flowing through the
system the adsorption isotherm of the analyte ioncolumn.
depends on the ionic strength of the eluent phase.The term b in Eq. (1) has its origin in the
This simplification is in principle not needed but isexchange between component 3 and 1 on the station-
necessary to introduce in order to obtain a closedary phase when the boundary moves along the
form algebraic solution to the mass balance equation.column. Its numerical value is equal to the contribu-
The behaviour of a real system will be more complextion to the eluent phase conductivity from this
than the simplified systems which are discussed here.exchange:
The presented examples can be considered as ob-

1 1 tained from an idealised system that has a similar] ]b 5 u u Ffn ? 2 (4)S D2 1 3 u u3 1 behaviour as a real system.
Eq. (1) in combination with Eq. (7) can after someWhen the adsorption isotherm of component 3 to the

rearrangement be written so that the terms represent-stationary phase surface is known, all the parameters
ing chromatography, electrophoresis and the mixingappearing on the right hand side of Eq. (1) are
between these two are separated:known from the experimental conditions of the

]]]]]]]]system. 2Iu Iu Iub b b3 3 3
] ] ] ] ] ]v 2 1 k 1 v ? 1 6 v 2 v k 1 2 4v ? ? 1 1 ks d s dS D0 0 0 0 0In analogy with both electrophoresis and chroma- k k k k k kK K œ K K K K

]]]]]]]]]]]]]v 5tography, the composition on the S side of the b
]2 1 1 k ? 1 1s d S DkKboundary is not the same as on the S9 side and a

mass balance analysis gives that: (8)
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Here the term Iu /k represents the velocity of physically unattainable, the reason being that the3 K

component 3 in a pure electrophoretic system and the numerator is always positive and the denominator
term b /k represents the change in conductivity, always negative resulting in a negative value for c .K 1

relative to a pure electrophoretic system, caused by (B) No adsorption of the analyte ion to the
the adsorption of component 3. stationary phase, i.e. k50: when the analyte ion does

Eq. (8) is of fundamental importance and it is not adsorb to the stationary phase we have a pure
necessary to investigate its properties more closely. electrophoretic system. When k50 is inserted into
First we note that Eq. (8) has two roots which both Eq. (8), the following two roots are obtained:
satisfy the mass balance equation. It is important to

Iu3investigate if both roots are physically realistic ]root 1: v 5 v 1 (11a)0 kbecause this would imply that two different veloci- K

ties for the boundary are allowed. Secondly, the term
root 2: v 5 v (11b)0under the root sign may become negative so that an

imaginary root is obtained. This is not physically
The velocity according to root 1 is the same asrealistic and implies that the mass balance equation

that obtained from electrophoretic theory and thecan not be satisfied by the system, i.e. a constant
velocity according to root 2 is equal to the eluentcomposition on the S side of the boundary does not
phase velocity through the column. Inserting theseexist. Thirdly, the denominator may approach zero
two roots into Eq. (5) gives:implying that the velocity may approach infinity. To

rationalise the multitude of possibilities, the ensuing u u 2 us d1 3 2
]]] 9root 1: c 5 c ? 1 c (12)discussion is divided into some limiting cases. 1 3 1u u 2 us d3 2 1

(A) No current through the column, i.e. I 5 0: this
As expected root 1 gives the same c value as thatcorresponds to a pure chromatographic system and 1

obtained from the Kohlrausch regulating function ininserting I 5 0 into Eq. (8) the following two roots
electrophoretic theory.are obtained:

The value for c from root 2 is more complicated1v0
]]root 1: v 5 (9a) because when v 5 v and k 5 0 (i.e. b 5 0) the third01 1 k

term in the numerator in Eq. (5) is undetermined.
v0 The limiting behaviour for v 2 v when k → 0 can be0]]root 2: v 5 (9b)

b investigated by performing a series expansion of the]1 1 ]]kK square root term ( (1 1 x) ¯ 1 1 1/2x) as well as ofœ
the terms in the denominator [1 /(1 1 x) ¯ (1 2 x)] inRoot 1 corresponds to the velocity of a chromato-
Eq. (8). It is easily shown that for small k, the v 2 v0graphic zone but root 2 has no counterpart in
term contains only terms which are quadratic and ofchromatographic theory. From these two equations
higher order in k. When this result is inserted into Eq.alone it is, in principle, not possible to judge if both
(5), the concentration of component 1 approachesroots are physically meaningful. A necessary phys-
infinity when k → 0. The physical interpretation ofical condition is that the concentration of component
this result is that the conductivity in the zone that1 in the zone is higher than zero, i.e. c . 0. By1 contains component 3 approaches infinity, so that theinserting the two different roots into Eq. (5) we
electric field strength in the zone approaches zero.obtain that:
There is therefore no electrophoretic migration of

9root 1: c 5 c 2 c (10a) component 3 and it moves under the influence of the1 1 3

eluent phase only.u 2 us d3 2
]]]root 2: c 5 c ? (10b) (C) No flow of eluent phase, i.e. v 5 0: inserting1 3 0u 2 us d2 1 v 5 0 into Eq. (8) gives the following two roots:0

As expected, root 1 is the same as that obtained
Iu3according to the chromatographic theory for this ]]]]]root 1: v 5 (13a)1 1 k k 1 bs ds dparticular system. This contrasts to root 2 which is K
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root 2: v 5 0 (13b) u u 2 us d1 3 2
]]] 9root 1: c 5 c ? 1 c (16)1 3 1u u 2 us d3 2 1

The velocity obtained from root 1 is the velocity
of the analyte due to electrophoretic migration Again, the second root is more complicated and is
retarded by adsorption. The first term in the de- in this case investigated by letting (1 /u 2 1/u ), i.e.3 1

nominator is the adsorptive retardation and the b, approach zero. By series expansion it can be
second term represents the conductivity of the eluent shown that:
phase.

Iu 2 v kkv b 3 0 KThe corresponding concentrations for component 1 ]] ] ]]]]? → (17)S Dv 2 v F Fv kb →00 0becomes:

u b which, when inserted into Eq. (5), gives that:1
] ]c ? u 2 u 1 K u u 2s d3 3 2 u 1 2u F3

]]]]]]]]]root 1: c 5 (14) Iu1 3u 2 u2 1 ]] 2 c (u 2 u )3 3 2Fv k0
]]]]]]root 2: c 5 (18)1The corresponding concentration for root 2 is u 2 u1 2

more complicated since ‘zero is divided by zero’
when both v and v are equal to zero. It can be (E) Small mixing of chromatographic and electro-0

shown by series expansion of the square root term phoretic propagation mechanisms: inspection of Eq.
(see case C) for small v that v 2 v contains only (8) shows that the last term under the root sign0 0

quadratic v terms. This implies that for this root the contains the mixing of chromatographic and electro-0

concentration of component 1 approaches infinity so phoretic parameters. When either the current, I, or
that the electric field strength in the zone approaches the retention factor, k, is small, either a chromato-
zero, i.e. in analogy with case C, there is no graphic or a electrophoretic transport mechanism will
electrophoretic migration of component 3. dominate. Under these conditions the last term under

(D) The mobility of the analyte and its co-ion are the root sign is small compared to the squared term.
equal, i.e. u 5 u : inserting u 5 u into Eq. (8) Series expansion of the square root term gives that1 3 1 3

gives: Eq. (8) can be approximated as:

Iu3 Iu3]v 1 ]]0 v 10kK k 1 bK]]]root 1: v 5 (15a) ]]]]root 1: v ¯1 1 k 1 1 k

v bIuand 0 3
]]]]]]]]2 (19a)
k 1 b v b 2 k v k 1 Ius ds dK 0 K 0 3root 2: v 5 v (15b)0

bIu3
]]]]]]]v ? 1 1F G0The velocity given by root 1 is the linear addition k v b 2 k v k 1 Ius dK 0 K 0 3

]]]]]]]]]]root 2: v ¯of the chromatographic and electrophoretic velocity b
]1 1retarded by adsorption. The reason why the simple kK

adding of velocities applies here is that the con-
(19b)ductivity in the eluent phase is the same as in a pure

electrophoretic system. The physical explanation for
The first term in Eq. (19a) is the sum of retardedthis result is that, since the electrophoretic mobility

chromatographic and electrophoretic velocities andof component 1 and 3 are equal, the conductivity of
the second term is the first order mixing term. Eq.the eluent phase is independent of which of the two
(19b) shows that the velocity corresponding to thecomponents is present in the eluent phase.
second root will be close to v at low concentrationsThe concentration of component 1 according to 0

of component 3.root 1 is:
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3. Results and discussion

The theory section concentrated on a discussion of
some special cases where Eq. (8) can be simplified.
Most of these are treated because their properties are
known from the theories of chromatography and
electrophoresis and it is important that Eq. (8) is
consistent with these. In the analysis of the general
properties of Eq. (8) it is convenient to distinguish
between the cases where u , u or u . u . In the3 1 3 1

first case b is always negative which implies that the
term under the root sign in Eq. (8) is always positive.
However, a negative b value also implies that b /kK

has a negative numerical value and may become
equal to 21, the denominator in Eq. (8) becomes
zero. This would lead to an infinite zone velocity,
which of course is physically unrealistic, and the
mathematical properties of this particular situation
needs to be further investigated. When u . u the3 1

numerical value of b becomes positive which im-
plies that the term under the root sign in Eq. (8) may
become negative and this gives two imaginary roots
for the zone velocity. The physical meaning of an
imaginary root is that no solution to the mass balance
equation exists so that the coherence condition for a
migrating zone can not be fulfilled. These unusual
properties of Eq. (8) are illustrated and further
discussed in the ensuing three examples.

In the first example u , u and the numerical3 1

value for the rest of the parameters in Eq. (8) are
chosen so that they are of the same order of
magnitude as in experimental practice. The velocity
of the boundary as a function of the concentration of
component 3 according to the two existing roots is
shown in Fig. 2a. The figure shows that at low c3

values one of the roots (root 1) gives the velocity
232.67?10 (m/s) and that the other root (root 2)

23approaches the velocity v (55?10 m/s) The0

value for root 1 is close to the velocity in corre-
23sponding pure chromatographic system [2.5?10

(m/s)] and shows that, with this particular set of
values for the different parameters, the contribution Fig. 2. (a) Velocity of the moving boundary as a function of the
from the electric field to the migration is very small. concentration of component 3 according to the two roots of Eq.

(8). (b) Concentration of component 1 in the zone which satisfyIt is also interesting to note that the velocity is more
the coherence condition, as a function of the concentration ofor less independent of the concentration of com-
component 3. In both figures all other parameters in Eq. (8) are

ponent 3 in the zone. The reason for this indepen- 23held constant with the following values: k51, v 5 5 ? 10 (m/s),0
28 2 28 2 28dence can be understood by examining the con- u 5 6 ? 10 (m /V s), u 5 2 6 ? 10 (m /V s), u 5 2 ? 101 2 3

2 3 29 9centration of component 1 in the zone as a function (m /V s), c 5 c 5 25 (mol /m ) and I 5 5000 (C/m s).1 2
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of c , Fig. 2b. The figure shows that when the3

concentration of component 3 increases, the con-
centration of component 1 in the zone changes in
such a way that (c 1 c ) is approximately constant.1 3

The net result is that, in order to fulfil the coherence
condition, the conductivity and the created electric
field strength in the eluent phase are almost in-
dependent of c .3

The properties of root 2 are more complicated.
Despite the relatively high chromatographic retarda-
tion the zone velocity is higher than the eluent phase
velocity when c . 0. The reason is that the coher-3

ence condition gives very low concentrations of
components 1 and 2 in the zone. This results in a
very low conductivity and a corresponding high field
strength in the zone. The relatively high zone
velocity is therefore caused by a high electrophoretic
velocity of component 3. The figure also shows that
when the concentration of component 3 increases

3above 2 mol /m , the velocity according to root 2
becomes physically unrealistic because the concen-
tration of component 1 is negative. Thus, when the

3concentration of component 3 is ,2 mol /m , the
mass balance analysis alone cannot discriminate
between these two roots. New criteria need to be
found to determine which of the two roots a par-
ticular system obeys. Such criteria have no counter-
part in either chromatographic or electrophoretic
theories and therefore remains to be formulated. It
seems reasonable to believe that the starting con-
ditions determine which of the two roots a particular
system follows. Root 1 is followed when the con-
centration of component 1 in the starting solution is
close to its value in the eluent phase, i.e. in this case

325 mol /m . When the concentration of component 1
is very low in the starting solution it is reasonable to
assume that it follows root 2. However, more
experimental and theoretical work are needed to
solve this interesting problem.

In the example shown in Fig. 3 the numerical
value of the parameters are the same as in the
previous example, except that the chromatographic Fig. 3. (a) Velocity of the moving boundary as a function of the
retention factor of the analyte increases from unity to concentration of component 3 according to the two roots of Eq.

(8). (b) Concentration of component 1 in the zone which satisfyten. The value for b therefore increases by a factor
3 the coherence condition, as a function of the concentration ofof ten and when c ¯ 2.2 mol /m its value is equal3 component 3. In both figures all other parameters in Eq. (8) are

to 2 k . At this point the denominator in Eq. (8) 23K held constant with the following values: k510, v 5 5 ? 100
28 2 28 2becomes zero. The zone velocity for both roots as a (m/s), u 5 6 ? 10 (m /V s), u 5 2 6 ? 10 (m /V s), u 5 2 ?1 2 3

28 2 3 29 9function of c is shown in Fig. 3a where it is seen 10 (m /V s), c 5 c 5 25 (mol /m ) and I 5 5000 (C/m s).1 23
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that the velocity according to root 2 approaches
infinity at the point where b 5 2 k . The corre-K

sponding concentration of component 1 as a function
of c is shown in Fig. 3b and shows that for this root3

the value for c is negative at very low concen-1

trations of component 3. When b 5 2 k the con-K

ductivity in the zone is zero, which corresponds to
the hypothetical case of negative concentrations of
component 1 and 2 which, of course, is a physically
unattainable state.

Fig. 3a also shows that even when the de-
nominator in Eq. (8) passes through zero the velocity
for root 1 is continuous in the studied concentration
interval for component 3. The reason is that for this
root the numerator also becomes zero when k 5 2K

b so that the ratio between the two has a finite value
at this point. As seen in Fig. 3b the concentration of
component 1 is positive in the whole c interval3

which means that this root is physically realistic.
This system therefore has root 1 as the only phys-
ically attainable root, except possibly for very low c3

values, and will therefore migrate with the velocity
given by this root.

When u . u the denominator in Eq. (8) has3 1

positive values for all concentrations of component 3
and its numerical value will increase with increasing
c . However, the last term under the root sign in the3

numerator, representing a mixing between electro-
phoretic and chromatographic migration, is negative
for all c values and the whole term under the root3

sign may become negative. This case is illustrated in
Fig. 4a. Compared to the example shown in Fig. 2,
the numerical value of the mobility for component 3
have been interchanged with the mobility of the ions
in the eluent phase. The value of the other parame-
ters are the same in the two examples. A comparison
of the velocity given by root 1 with that in Fig. 2a
shows that its value has increased. There are two
reasons for that: firstly, the mobility of components 1
and 2 has decreased and, since the current is the
same in the two examples, there is a higher field
strength in the present case. Secondly, the electro- Fig. 4. (a) Velocity of the moving boundary as a function of the
phoretic mobility of component 3 has increased concentration of component 3 according to the two roots of Eq.

(8). (b) Concentration of component 1 in the zone which satisfywhich results in a higher electrophoretic migration
the coherence condition, as a function of the concentration ofvelocity.
component 3. In both figures all other parameters in Eq. (8) are

The concentration of component 1 in the zone as a 23held constant with the following values: k51, v 5 5 ? 10 (m/s),0
28 2 28 2 28function of c , which corresponds to the velocity u 5 2 ? 10 (m /V s), u 5 2 2 ? 10 (m /V s), u 5 6 ? 103 1 2 3

2 3 29 9according to root 1 Fig. 4a, is shown in Fig. 4b. The (m /V s), c 5 c 5 25 (mol /m ) and I 5 5000 (C/m s).1 2
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figure shows that its value approaches the ionic 4. Conclusions
composition of the eluent phase at low concen-
trations of component 3. As the c value increases The velocity of a zone through a chromatographic3

the concentration of both component 1 and 2 de- or an electrophoretic column is obtained by solving
crease and is lower than in the eluent phase. The the mass balance equation for the system. For an
conductivity in the zone therefore decreases slightly electrochromatographic system containing three ionic
when the concentration of component 3 increases components, a mass balance analysis gives that the
and this explains the slight increase in zone velocity velocity of a composition boundary is expressed by
with increasing c . Eq. (8). This equation is analysed in this paper with3

The second root in Fig. 4a approaches the value v respect to its general properties and its properties at0

at low c values and, in contrast to the behaviour of certain limits. The conclusion from the performed3

root 1, its value decreases with increasing c . The analysis is that in the limit of no current or no3

higher velocity for root 2 is achieved by a lower adsorption, Eq. (8) is consistent with the existing
concentration of both component 1 and 2 for low c theories for chromatography and electrophoresis,3

values. This gives a lower conductivity in the zone respectively. However, when chromatographic and
and a corresponding higher field strength. As the electrophoretic migrations are mixed the equation
concentration of component 3 increases the con- has complex properties. The reasons for the com-
centration of both component 1 and 2 increases. This plexity are
results in an increase in the zone conductivity and 1. The solution has two roots, and under some
decreased field strength. This explains the decrease conditions both of the roots are physically attain-
in velocity of the zone with increasing concentration able. This implies that a zone (or a peak) consist-
of component 3. ing of one single analyte ion may migrate through

Fig. 4a also illustrates that at a certain c value the the column with two different velocities which3

sum of terms under the root sign becomes zero and both satisfy the coherence condition.
at this point the numerical value of root 1 and 2 are 2. When the mobility of the analyte ion (component
the same. Fig. 4b shows, as expected, that at this 3 in this paper) is smaller than the mobility of its
point both roots gives the same ionic composition in co-ion (component 1) the denominator of Eq. (8)
the zone. For higher c values the term under the may approach zero. At the zero point only one of3

root sign in Eq. (8) is negative and the solution is the solutions of Eq. (8) is physically attainable
imaginary. The existence of an imaginary root is 3. When the mobility of the analyte ion is higher
interesting because it implies that there exists no than the mobility of its co-ion the numerical value
solution to the mass balance equation for certain c of the term under the root sign in Eq. (8) may be3

values. The physical interpretation of this state is that negative. Under this circumstance the coherence
the coherence condition cannot be satisfied so that no condition can not be satisfied by the system and
stable composition in the zone can develop. If this no stable zone or peak exists. This leads to an
state arises in an electrochromatographic system the extraordinary peak broadening and asymmetry.
peak broadens strongly and the peak shape becomes From the analysis of the mass balance equation,
very unsymmetrical. For high enough c values the two general rules emerge in order to avoid the3

term under the root sign becomes positive again. complex conditions that usually are detrimental in an
There is therefore an interval of c values for which analytical application:3

the root is imaginary (not shown in the figure) and 1. The value for b in Eq. (8) shall be chosen so that
the width of the interval varies from case to case. it takes a small value. In an ion-exchange system

3For c values lower than 5 mol /m , Fig. 4b shows this is achieved by choosing the mobility of the3

that both existing roots to Eq. (8) give a positive co-ion (component 1 in this paper) to be as close
value for the concentration of component 1 in the as possible to the mobility of the analyte ion.
zone. This implies that both roots satisfy the coher- 2. The last term under the root sign in Eq. (8) shall
ence condition in the zone and it is therefore not have a relatively small value. This means that too
possible to reject any of the roots from the mass much mixing of chromatographic and electro-
balance analysis alone. phoretic migration shall be avoided. However,



˚J. Stahlberg / J. Chromatogr. A 887 (2000) 187 –198 197

this does not mean that it is impossible to k9 conductivity of the mobile phase on the
21successfully run a CEC system with mixed migra- S9 side of the moving boundary (S m )

tion, only that it is rather difficult to find efficient k conductivity of the mobile phase in aK

and stable experimental conditions. corresponding electrophoretic system (S
21m )

r density of the stationary phase material
3(kg /m )

5. Nomenclature

A specific surface area of the stationarys Appendix A
2phase (m /kg)

2A column cross section area (m )c Consider two fixed cross-sections of the column, S
c mobile phase concentration of compo-i and S9 in Fig. 1, between these there is a distinct

nent i on the S side of the boundary boundary dividing two different compositions of the
3(mol /m ) eluent phase. The boundary moves along the column

9c mobile phase concentration of compo-i with the linear velocity v (m/s) due to a flow, vv
3nent i on the S9 side of the boundary (m /s) of the eluent phase and to a current I (A)03(mol /m ) passing through the column. The eluent phase con-

F Faraday constant (C/mol) sists of three different components; each of them
i (in the presented examples) 15 may adsorb to the stationary phase. The amount of

positively monocharged ion; 25 component i that is accumulated between the two
negatively monocharged ion; 35 cross-sections during the time interval dt and due to
positively monocharged ion, the eluite the propagation of the eluent phase and the transport
ion of current is:

I current density through the column (C/
2 T Ii 0m s). ]] 9Amount accumulated 5 c v dt 1 dt 2 c v dti v i vz FI current through the column (A) i0

k chromatographic retention factor of 9T Ii 0
]]2 dt (A1)component 3 z Fi

K analogue of the Kohlrausch regulatingu
39where c and c are the concentrations (mol /m ) offunction, defined in Eq. (12), (mol s V/ i i

5 9component i in the eluent phase and T and T arem ) i i

the transference numbers in the two different eluentn surface concentration of component i oni
2 phase compositions, respectively. F is the Faradaythe stationary phase surface (mol /m )

constant (C/mol) and z the charge of the com-T transference number of component i ii

ponent. Since the composition on each side of the(dimensionless)
boundary is constant, the amount accumulated equalst time (s)
the change in amount caused by the change dx inu electrophoretic mobility of component ii

2 position of the boundary:in the mobile phase (m /V s)
x length coordinate along the column axis

9Amount accumulated 5 n 2 n Afs di i s(m)
1 c 2 c V A 1 2 e rdxz charge number of component i (dimen- s ds d gi i 0 ci

sionless) (A2)
b defined by Eq. (4)

9e total porosity of the packed column where n and n are the surface concentrations (mol /i i
2(dimensionless) m ) of component i on each side of the moving

f column phase ratio (1 /m) boundary, V is the volume of the mobile phase per0
3

k conductivity of the mobile phase on the weight unit of the stationary phase (kg/m ) and A s
21S side of the moving boundary (S m ) is the specific surface area of the stationary phase
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2(m /kg). A is the area of the cross-section of the through the column. When the boundary is stable, i.e.c

column, e is the porosity of the packed column and r the coherence condition is fulfilled, Eq. (A7) applies
3is the density (kg/m ) of the stationary phase simultaneously for all the components present in the

material. Since Eqs. (A1) and (A2) express the same system. For the three component system discussed in
accumulation they are identical and recognising that this paper there are therefore three equations of the
dx /dt is equal to linear the velocity, v (m/s) of the form A7 and, in principle, this set of equations can
boundary we obtain that: be used to solve for v as a function of c . However,3

it is possible to simplify the algebra by using the
dx
] electroneutrality condition in the eluent phase and to5 v
dt

rewrite Eq. (A7), see Ref. [26] for details.
9(T 2 T )Ii i 0

]]]9(c 2 c )v 1F Gi i v z Fi
]]]]]]]]]]5 (A3)

9 9n 2 n A 1 c 2 c V A 1 2 e rs dfs d s d gi i s i i 0 c
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